
NERD: Network Entity Reputation Database
Václav Bartoš
CESNET a.l.e.

Prague, Czech Republic
bartos@cesnet.cz

ABSTRACT
We present an open database of known malicious entities on the
internet called Network Entity Reputation Database. It gathers alerts
from a large number of diverse security monitoring tools and other
sources and keeps detailed information about all network entities
(IP addresses, ASNs, domain names, etc.) which have been reported
as malicious. It also adds other related data from a multitude of
sources, like whois registries, blacklists or geolocation databases.
Due to the large amount, diversity and volatility of such data, cre-
ation of such a database system is not trivial. In the paper we
describe the data model, system architecture and technologies used,
as well as some statistics from the pilot deployment of the system.
We operate the database as a free service for the cyber security
community to help with prevention, defense, investigation of in-
cidents as well as research and believe it will become a valuable
contribution to the family of existing open cyber threat intelligence
platforms.

CCS CONCEPTS
• Security and privacy → Network security; Intrusion detec-
tion systems; • Information systems→ Information integration;
Information storage systems.

KEYWORDS
Network security, Reputation database, Threat intelligence plat-
form, CTI, OSINT
ACM Reference Format:
Václav Bartoš. 2019. NERD: Network Entity Reputation Database. In Proceed-
ings of the 14th International Conference on Availability, Reliability and Secu-
rity (ARES 2019) (ARES ’19), August 26–29, 2019, Canterbury, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3339252.3340512

1 INTRODUCTION
The amount and variety of cybersecurity threats are growing, espe-
cially on the network. Security professionals recognize this trend
and develop and deploy various network monitoring and analysis
tools that automatically detect and report diverse kinds of security
incidents. Examples of such tools include honeypots, flow analysis
systems, anomaly detectors or log analyzers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7164-3/19/08. . . $15.00
https://doi.org/10.1145/3339252.3340512

Such tools usually generate some kind of data records about
detected events. We call them alerts1. An alert is a low-level in-
formation describing a network security event, for example: “IP
address A tried to connect to an SSH honeypot”, “IP addresses
A,B,C took part in a DDoS attack against IP address X”, “IP address
B scanned whole IP address range R on port 23” or “URL Y was
identified as a command and control (C&C) server of a botnet”. Such
alerts represent a low-level cyber threat intelligence (CTI). They
may be useful by themselves, but it is also common to gather alerts
from multiple sources, or share them, and apply various correlation
mechanisms to get a more high-level information about the current
threats.

There exist other types of CTI. For example, results of malware
analysis, or information on ongoing malware or phishing cam-
paigns. Many types of such information are being shared among
security professionals and organizations using various CTI sharing
platforms. These include, for example, Warden2 [5] for sharing
low-level alerts, DShield3 for IDS and firewall logs, or more generic
CTI tools and platforms like MISP4 [8], AlienVault Open Threat
Exchange5 or IBM X-Force Exchange6. Some of these platforms
serve only for data sharing, others also perform some analysis or
correlation and create a searchable database. Data in such systems
are usually grouped primarily by events, campaigns or threat ac-
tors. We agree this is useful in many cases, but we propose another,
complementary approach – to focus primarily on the network enti-
ties that may pose a threat – malicious IP addresses, networks, or
domain names. For example, if an analyst encounters a suspicious
IP address, he may need to quickly assess if it is known for any
malicious activity and what kind of threat it may pose. A database
specialized on assessing such entities may also allow to label them
or rank them by various criteria, which in turn may be used to
generate lists of the most dangerous entities or those that target a
specific protocol or vulnerability, for example.

Of course, the idea of listing malicious entities is not novel. For a
long time it is common to list IP addresses or domain names deemed
as malicious in so called blacklists. They are well known for their
usage to fight spam emails, but they are used in other areas as well.
Blacklists are very easy to use, but they typically do not provide
any further information about the entities, only whether it is listed
or not.

There also exist reputation databases provided as part of various
commercial cyber security solutions. These sometimes containmore
detailed information about the malicious entities, but access to them

1 There exist other names for this kind of information with the same or similar meaning,
e. g. events, incident reports or indicators of compromise.
2https://warden.cesnet.cz/
3https://www.dshield.org/howto.html
4http://www.misp-project.org/
5https://otx.alienvault.com/
6https://exchange.xforce.ibmcloud.com/

https://doi.org/10.1145/3339252.3340512
https://doi.org/10.1145/3339252.3340512
https://warden.cesnet.cz/
https://www.dshield.org/howto.html
http://www.misp-project.org/
https://otx.alienvault.com/
https://exchange.xforce.ibmcloud.com/

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Václav Bartoš

is limited only to users of the particular security solution and due to
their closed nature, it is usually unclear what are their data sources,
how the data are processed or what rules are used to list or delist
an entity.

In this work, we present a rich, open database of information
about malicious entities called NERD, Network Entity Reputation
Database. It gathers alerts from a large number of diverse sources
and keep detailed information about all network entities reported
as malicious (not only IP addresses, but also network prefixes, do-
main names, etc.). It not only lists the entities but also contains
information on reasons why the entity was listed, when and based
on what sources of information. It also provides additional infor-
mation (like geolocation or network type) that might be useful for
an analyst. All this information is provided for free to the cyber
security community to help protect networks, investigate incidents
or conduct research.

Due to the large amount, diversity and volatility of data stored
in such a database system, its design and implementation is not
trivial. Besides presenting the system as a service for the community,
the goal of the paper is also to describe the data model, system
architecture, data processing methods and technologies used to
implement it.

The paper is organized as follows. In the next section the NERD
system is described in detail. Section 4 summarizes the current state
of implementation and Section 3 briefly describes access policy for
the data. In Section 5 we show some basic statistics of data currently
stored. Section 6 concludes the paper.

2 SYSTEM DESCRIPTION
This section describes the design of the system with all planned
features. Not all of them are currently available (see Sec. 4 for
details).

From a user’s point of view, the Network Entity Reputation
Database (NERD) system is an online portal where the user can
search any IP address, domain name or another network identifier
(an entity) and get all security related information known about it –
list of all alerts that reported it as a source of somemalicious activity,
whether it is listed on some blacklists or other databases, related
information from DNS, whois, geolocation, or data from internet-
wide scanning services. It is also possible to search for entities that
match various criteria and sort them by various attributes or by a
score summarizing the associated threat level. There is also a REST
API for easy integration of the data into any other security or threat
intelligence system.

Behind the web portal and the API, which servers to access the
data, there is a complex, modular system to acquire and process data
from various sources, store them to the database and periodically
update them.

2.1 Data sources and storage
The data model used by the reputation database must be highly
flexible. That is because it is expected that new data sources will be
added from time to time, while the old ones may be removed, either
because the data source becomes discontinued or it turns out to be
unreliable, for example. Also, the cyber security area as a whole
changes over time so the requirements on the system and the data

provided by it may change as well. Nevertheless, it is still possible
to describe some general concepts that are not expected to change.

The main data unit is an entity record, a JSON-like document
that stores all information about an entity. The entity may be an
IP address, network, autonomous system number (ASN), domain
name, etc. Each record has a number of attributes and may contain
links to other entities.

Sources of the data stored in the records can be divided into
two classes – primary and secondary. The primary data sources are
those that report some particular network entities as malicious and
are used to create entity records. It may be alerts from honeypots,
IDS or anomaly detection systems (gathered directly or via an alert
sharing system, such asWarden), data from cyber threat intelligence
sharing platforms, such as MISP, or even simple blacklists if it is
possible to download them7.

When an entity record is created, after the entity was reported by
some primary source, secondary data sources are used to fetch addi-
tional information about it. This include querying whois databases,
DNS for mapping IP addresses to hostnames and vice versa, geolo-
cation and querying IP or domain lists that are not used as primary
sources (either because it is not possible to download the list, or
because the listed entities are not necessarily malicious, as in case of
dial-up or proxy lists, for example). It is also possible to query other
databases, such as Shodan8 or VirusTotal9, and store summary of
results locally.

The primary data are usually received as some kind of alerts or
as records fetched from another system. Only meta-data, such as
number of alerts per day and type, are stored in the entity records.
However, a copy of the original record is often stored as well (in
a separate database), so the system is able to provide full details.
The secondary data are usually stored directly as attributes of the
records.

Some attributes can also be computed from other attributes al-
ready present in the records. For example, the meta-data about
received alerts can be used to assign tags based on the prevailing
type of malicious activities performed by the entity, or some rules
and regular expressions may be applied to hostnames to guess
properties of the device or its connection, e.g. if it is a dynamically
assigned IP address, NAT, cloud server or a DSL connection.

The system also allows to store data with some kind of uncer-
tainty or those whose reliability decreases over time. Therefore,
some of the attributes contain not only the value, but also the
timestamp of when the value was acquired or checked, and/or a
confidence value.

For some attributes whose values can change often and the his-
tory may be important, like presence of an IP address on blacklists,
the database keeps not only the current value, but also all the history
values and their timestamps over several last months.

2.2 Entity scoring
All the data about entities are available to users in full detail, but in
order to provide simple and actionable information, it is beneficial
to also provide some kind of summarization, e.g. by assigning a
7Some blacklist providers only allow to query a particular, already known IP address
or domain name, which prevents usage of such a list as a primary data source.
8https://www.shodan.io/
9https://www.virustotal.com/

https://www.shodan.io/
https://www.virustotal.com/

NERD: Network Entity Reputation Database ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Processing
controller

Plug-in
modules

Primary
data

receivers

Worker process

Updater

Split by hash
of entity ID

Task queue

Secondary
data sources

Web server

Supervisor
Primary

data sources

Download
scripts

Micro-
services

and caches

Event DB Entity DB Redis

Figure 1: Architecture of the NERD system

number or a small set of numbers (scores) to each entity. Such a
numeric summarization allows for quick comprehension of entity
characteristics as well as ranking of entities, e.g. by the level of
threat they pose. It can then be utilized by automated security tools,
for example, to block traffic from the most offending IP addresses
or domains, or by a user, for example, to prioritize investigation of
reported incidents or to bring attention to a prevailing issue.

The NERD system implements a scoringmechanism based on the
method presented in [2]. It assigns a score to each address based
on the estimated probability of it performing malicious activity
in the immediate future. The score is called Future Misbehavior
Probability (FMP). Several such scores can be computed for each
address, each expressing the likelihood of different type of attack
and for different length of the future time window (e.g. next 4 hours,
24 hours, a week). Thus the score expresses the level of threat each
IP address poses in a specific context. A summary score, computed
as a weighted sum of the individual ones, is available as well.

The focus on the future behavior is motivated by the fact, that
the information about attacks and attackers that are likely to occur
in the near future is exactly what is needed for effective prevention.
However, since the prediction is basedmostly on reports of previous
malicious behavior of each address, the scores also serve well as a
summarization of address’ characteristics and previous activities.

The prediction is performed by a machine learning model based
on gradient boosted decision trees (also known as xgBoost [3])
trained on historical data. More information about the method as
well as examination of some potential uses of the score can be found
in [2].

2.3 Architecture
Due to the need for flexibility, as well as scalability, the NERD
system uses a highlymodular architecture. It consists of a number of
collaborating components. The architecture is depicted in Figure 1.

First, there are several databases. The main one, called entity
database, stores all the entity records, as described in Section 2.1.
There is also a separate database to store original data from primary
sources (events, alerts). These may be actually multiple databases,
since different technologies may be suitable for different types of
data. At last, there is an instance of a fast in-memory key-value
database (Redis), that serves for storage of various, often tempo-
rary or fast changing, data that need to be accessed globally by
different components. It also serves for various logging and caching
purposes.

The main input of the system is represented by a set of primary
data receivers. They receive messages, alerts, or entity lists from
the primary data sources and put tasks (called update requests) to a
global queue to create or update records of related entities.

The tasks are processed by the core of the system – a set of
workers. They apply the requested updates on given entity records.
Also, the workers fetch data from external (secondary) sources and
compute other attributes. This functionality is handled by plug-in
modules, so it is easy to add, change or remove secondary data
sources or computed attributes.

The workers may run in any number of instances in parallel,
which makes the system easily scalable. Tasks are distributed to
workers according to a hash of the entity identifier (a task always
involves processing of a single entity record only), so the same
record is always handled by the same worker. This helps to avoid a
need for record locking and other concurrency issues. If the pro-
cessing core or a plug-in needs to store a global state information,
it is stored outside the workers, usually in the Redis database.

Most of the plug-ins fetch data from external sources. Depending
on the type and availability of the data, three methods of data
acquisition are used: (i) the data are queried directly from their
original sources by the plug-in module (for example, whois data
are got this way); (ii) there is a special microservice or a cache
to provide easier or more efficient access to the data (an example

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Václav Bartoš

is a caching recursive DNS resolver used by hostname resolving
modules as well as for querying DNS blacklists; passive DNSmodule
gets data via a microservice that queries several external passive
DNS systems and merges the results); (iii) the data are periodically
downloaded, preprocessed and cached locally, as entries in Redis or
as local files (for example, downloadable blacklists or a geolocation
database).

Periodic refreshing of data in the entity records is controlled by
a component called updater. It checks timestamps of the last update
stored in each record and emits a task to update a set of attributes
when they are older then a specified time.

The last component is the web server, that presents all the data
in databases to users, either via web interface or REST API.

Whole system is managed by the process control system Super-
visor10.

2.4 Data processing
The data processing in workers is driven by tasks called update
requests, which are fetched from the main queue. An update request
is a simple message specifying a set of operations that should be
done with attributes of a specific entity record (e.g. increment the
total number of alerts by 1 for IP address X).

Upon receiving an update request, the worker fetches the corre-
sponding entity record from the database (or create a new one, if
it does not exist yet) and applies the requested changes. But that
is just the beginning. Each plug-in module can register callback
functions that are called when a specific event occurs. This may
be a special named event, such as addition of a new record, or a
change of value of a specific attribute. For example, a DNS module
may register a function on creation of a new IP address record. This
function resolves the hostname assigned to the IP address and stores
it to the record. This change of the hostname attribute may trigger
another function, registered by another module. It may, for example,
assign some tags based on the keywords found in the hostname.
This way, a single update request may result in a complex cascade
of subsequent updates. Only when the whole cascade of changes
and callback functions is processed, the modified record is written
back into the entity database. The processing then continues by
fetching another update request from the main queue.

Each update request, including all subsequent updates in the
cascade, work with a single entity record only. If a callback function
wants to make changes in some other record (e.g. update the record
of an autonomous system when a new IP address is added), it
enqueues a new update request into the main queue.

2.5 Implementation technologies
Most of the data gathering and processing components were im-
plemented from scratch as programs in Python, but of course, the
system also uses a number of well-known third party software.

Because of the diversity of the stored data and the aforemen-
tioned need for flexibility, we decided to use MongoDB as the main
storage of entity records. It is a schema-free document based data-
base system, so it allows to easily add new attributes without the
need to reconfigure database schema, it naturally supports arrays

10http://supervisord.org/

and subobjects and allows to create indices on any fields to enable
fast queries.

The database for copies of raw primary data (currently only
alerts formWarden) do not have such requirements for flexibility or
special data types, so we use a simple table in a classic SQL database
– PostgreSQL. Also, as already mentioned, there is a Redis database
for communication between components and various caching and
logging purposes.

Besides the databases, all the communications between compo-
nents – most notably the main task queue, but also some notifica-
tions or special queries from web interface – are implemented by
RabbitMQ queues.

All these data processing components are being managed using
the Supervisor tool.

The web portal and API are implemented in Python Flask frame-
work. The frontend part uses jQuery and several JavaScript microli-
braries.

The whole system is currently running on a single server. How-
ever, the architecture allows to easily distribute it on multiple
servers when such a need arises. The only change needed would be
to replace the Supervisor by an orchestration system able to control
such a distributed system.

3 ACCESS POLICY
The NERD system gets data from many different data sources, some
of them are public, others have a limited access. Also, some pieces of
the data may have character of private information (e.g. data about
connections made by concrete IP addresses) or may be otherwise
sensitive (e.g. IP addresses of honeypots). Therefore, full access to all
the data is limited to trusted members of cyber security community
and restrictions apply to allowed use of the data.

However, a subset of data is available to general public. Those are
data that do not require any special protection and come from public
sources and also an aggregated information from some restricted
sources. This limited data set is still quite large and can be utilized
in many ways, so the system can be used immediately by anyone
without a need to request the full access.

4 CURRENT STATE
A pilot deployment of the system runs as a free service available at
https://nerd.cesnet.cz/. The source code is released as open-source
and available on GitHub11.

This section briefly describes the current state of this implemen-
tation at the time of writing (April 2019).

4.1 Supported features and data sources
The core of the NERD system, as well as many data processing
modules and the web interface, are fully implemented, only the
number of data sources and supported types of entities are limited.

The primary entity type supported are IPv4 addresses. There are
also records of BGP prefixes and ASNs as groupings of IP addresses
according to the routing information. Similarly, there are records of
IP blocks and organizations according to data from whois databases
of regional registries. All currently supported entities and their
relationships are depicted in Figure 2.
11https://github.com/CESNET/NERD/

http://supervisord.org/
https://nerd.cesnet.cz/
https://github.com/CESNET/NERD/

NERD: Network Entity Reputation Database ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

IPv4
address

BGP
prefix

ASN

IP block
Organi-
zation

1

1

N

N

1N

MN

1

N

Figure 2: Currently supported entities and their relation-
ships

NERD currently uses only one primary data source – Warden,
an alert sharing system operated by CESNET [1, 5]. This system
gathers alerts from more than 30 security monitoring systems of
various types (honeypots, NetFlow analysis tools, IDS, etc.) de-
ployed in several large networks and provides them in a unified
format, IDEA12 [6]. The average number of alerts received from
Warden is around 2 million per day (23 per second). The meta-data
stored about alerts are the number of alerts per day, attack category
and the reporting detector.

We plan to add several more primary data sources very soon,
namely MISP [8] and selected feeds from AlienVault Open Threat
Exchange. We also plan to use several blacklists as the primary
source. Currently, blacklists are used as secondary sources only,
which means they are only queried for IP addresses that already
has a record in NERD, i.e. they were reported to Warden. When
used as primary source, each IP address on the blacklist will get a
record in NERD, even if it was not reported by any other source.

The list of secondary data sources is longer. It includes resolving
hostname via a reverse DNS query, geographic location (using
GeoLite2 database from MaxMind13), or originating BGP prefixes
and ASNs, together with related data from whois databases. As
already mentioned, many public blacklists are queried (some are
periodically downloaded and cached locally, others are queried via
DNSBL services). A number of tags are assigned to each IP address
based on numbers of alerts as well as the other information, like the
hostname or presence on some specific blacklists. Last but not least,
there is a module implementing the prediction model for assigning
the FMP score to IP addresses, as described in Sec. 2.2.

Some information is also got for ASN records. Besides the name
and the description from whois records, it is a BGP rank provided
by CIRCL14 or a network type (e.g. enterprise or transit) according
to a dataset15 provided by CAIDA.

Both web interface and API allow users to get details about any
entity in the database as well as search IP address by various criteria,
like IP prefix, hostname, geolocation, presence on blacklists or tags.
The API also allows to download records of all addresses matching
a given filter, or to get FMP score of a long list of addresses in a
single query16.
12Intrusion Detection Extensible Alert, https://idea.cesnet.cz/
13https://dev.maxmind.com/geoip/geoip2/geolite2/
14https://www.circl.lu/projects/bgpranking/
15The CAIDA UCSD AS Classification Dataset, https://www.caida.org/data/as-
classification/
16See full API documentation at: https://github.com/CESNET/NERD/wiki/RESTful-API

Table 1: Average number of records in NERD

Entity type Count
IPv4 address 1,200,000
BGP prefix 123,000
ASN 16,000
IP Block 38,000
Organization 16,000

4.2 Performance metrics
Data processing in the backend of the system is triggered by two
types of events – an incoming alert from Warden or a periodic
update of an existing entity record.

As mentioned above, on average there are around 23 alerts per
second received from Warden. A new IP address is reported and
thus a new entity record is created approximately once per second
(old alerts are removed in a similar rate). The rest of the alerts are
related to addresses observed earlier so they result in just a simple
update of an existing record.

The periodic updates of secondary data are triggered once per
day for each existing record. During such updates, values of all
attributes are determined in a single batch and all updates are
written to the database together, which means one database update
per record per day.

There are usually between 1 and 1.5 million records in the data-
base. Together with processing the Warden alerts, this means 3 to
3.5 million database updates per day (up to 40 per second).

On the frontend side, there is slightly over 100,000 queries per
day (1.2 per second) on average, mostly via the API.

The whole system is currently running on a single virtual server
with 8 vCPUs and 32 GB of RAM without any performance issues.
The entity database takes only around 3.5 GB of disk space (thanks
to compression performed automatically by MongoDB).

Our experience shows that the performance bottleneck is data
processing in the Python application itself (the worker process).
The current load can barely be processed by a single worker, but it
is easy to scale up by adding more workers.

The other components (most notably the databases) are able
to process several times more updates and reads even in the cur-
rent single-instance deployment and all of them are ready to be
distributed onto multiple machines if needed.

5 STATISTICS
Although the main goal of NERD is to provide detailed data about
individual entities, in order to provide more insight into the amount
and characteristics of the stored data, this section shows some basic
statistics from the current deployment of the system.

Each IP address record is currently kept in the database for 14
days since the last related alert is received. Records of other entities
are kept while another entity references them (e.g. IP block record
is removed when there are no more IP addresses in the block). With
this setting, there is usually around 1.2 million IP addresses in the
database. Average numbers of records (during April 2019) for all
entity types are shown in Table 1.

Most IP addresses are observed as malicious only for a short
period of time, i.e. most records are created just because of one or

https://idea.cesnet.cz/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://www.circl.lu/projects/bgpranking/
https://www.caida.org/data/as-classification/
https://www.caida.org/data/as-classification/
https://github.com/CESNET/NERD/wiki/RESTful-API

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Václav Bartoš

100 101 102 103 104

Number of alerts

1e-05 %

0.0001 %

0.001 %

0.01 %

0.1 %

1.0 %

10.0 %

Fr
ac

tio
n

of
 IP

 a
dd

re
ss

es

Figure 3: Histogram of number of alerts reported in last
month per each IP address. Note the logarithmic scale on
both axes, which also means the bins do not have the same
size.

a few alerts and removed after 14 days of inactivity. This can be
observed in Figure 3 which shows a histogram of the number of
alerts reported in last month per each IP address in the database. In-
deed, most addresses have just one or a few alerts stored. These are
either dynamically assigned IP addresses or low-activity attackers.
In general, they are usually not considered as a significant threat
(although it depends on the type of the reported malicious activity
as well). On the other side of the plot, there are addresses that are
reported by very large numbers of alerts. Despite their relatively
low number, these highly active addresses are responsible for large
amount of received alerts. A deeper look into the data shows, for
example, that only around 8000 (0.7 %) addresses are detected more
than 1000 times in a month, but these are responsible for more than
half (57 %) of all alerts received.

Another example of a simple statistical analysis that can be
done with the data in NERD utilizes the geolocation information.
It is well known that malicious IP addresses are geographically
distributed highly nonuniformly [1, 7, 9]. This can be observed in
our data as well. Table 2 shows top-10 countries by the number of
IP addresses reported as sources of port scanning and unauthorized
login attempts. Although the lists of countries as well as their
relative shares are slightly different depending on the attack type,
in both cases these ten countries alone contain approximately 58 %
of all addresses in our database.

At last, we show a statistic of presence of IP addresses on black-
lists. For each IP address in the database, NERD checks 50 public
blacklists. Table 3 shows the number of IP addresses by the number
of blacklists listing them. Almost 74 % addresses are found on at
least one of them, many are listed on multiple ones. On the other
hand, this means that over 26% of IP addresses reported as mali-
cious via Warden has not been recognized by any major blacklist
provider, yet, and NERD thus provides a completely new informa-
tion there. No IP address is simultaneously listed by more than 10
blacklists. This is not suprising, since many of the queried blacklists

Table 2: Top-5 countries by the number of IP addresses re-
ported as a source of malicious traffic.

Port scans Login attempts
Country IPs Country IPs
China 8.9 % China 15.2 %
Vietnam 8.6 % USA 9.7 %
Russia 8.4 % Brazil 7.2 %
Brazil 6.4 % Russia 5.6 %
USA 5.9 % India 4.2 %
India 5.8 % Iran 3.6 %
Indonesia 5.8 % S. Korea 3.6 %
Iran 3.9 % Taiwan 3.1 %
Taiwan 2.9 % Indonesia 3.0 %
Ukraine 2.2 % France 2.7 %

Table 3: Numbers of IP addresses by the number of blacklists
on which they are listed

Blacklists IPs
0 308012 26.5 %
1 346903 30.0 %
2 393634 33.8 %
3 88795 7.6 %
4 18484 1.6 %
5 5350 0.46 %
6 1875 0.16 %
7 692 0.060 %
8 232 0.020 %
9 71 0.006 %
10 16 0.001 %

are specialized for particular types of attacks and contain just a
small number of entries.

All the numbers in this section come from a single day in April
2019. However, the statistics are quite stable and data from other
days look very similar.

6 CONCLUSIONS
We presented a system and a service that provides an open database
of knownmalicious IP addresses and other entities –Network Entity
Reputation Database (NERD). It is available for free to a broad cyber
security community to help with prevention, defense, investigation
of incidents as well as research.

We believe that thanks to its ability to process large amount
of data, open access and the API for easy integration with other
systems, it will become a valuable contribution to the family of
existing open cyber threat intelligence platforms. There already are
active users of NERD in several organizations and the FMP score
provided via its API is used by the platform for threat intelligence
sharing and analysis developed in project PROTECTIVE17. We also
work on implementing the idea of using the FMP score from NERD
as an input to a DDoS mitigation algorithm, where it should help
to distinguish good and bad traffic as described in [4].

17https://protective-h2020.eu/

https://protective-h2020.eu/

NERD: Network Entity Reputation Database ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

ACKNOWLEDGMENTS
This research was supported by the Security Research Programme
of the Czech Republic 2015 - 2020 (BV III / 1 VS) granted by the Min-
istry of the Interior of the Czech Republic under No. VI20162019029
The Sharing and analysis of security events in the Czech Republic.

Thanks also goes to CAIDA organization for providing us access
to the CAIDA UCSD AS Classification Dataset (http://www.caida.
org/data/as-classification).

The system includes GeoLite2 data created by MaxMind, avail-
able from https://www.maxmind.com.

REFERENCES
[1] Václav Bartoš. 2016. Analysis of alerts reported to Warden. Technical Report 1/2016.

CESNET.
[2] Vaclav Bartos, Martin Zadnik, Sheikh Mahbub Habib, and Emmanouil Vasilo-

manolakis. 2019. Network entity characterization and attack prediction. Future
Generation Computer Systems 97 (2019), 674–686. https://doi.org/10.1016/j.future.
2019.03.016

[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 785–794.
[4] Tomáš Jánský, Tomáš Čejka, Martin Žádník, and Václav Bartoš. 2018. Augmented

DDoS Mitigation with Reputation Scores. In Proceedings of the 13th International
Conference on Availability, Reliability and Security (ARES 2018). ACM, New York,
NY, USA, 54:1–54:7. https://doi.org/10.1145/3230833.3233279

[5] Pavel Kacha, Michal Kostenec, and Andrea Kropacova. 2015. Warden 3: Security
Event Exchange Redesign. In 19th International Conference on Computers: Recent
Advances in Computer Science.

[6] Pavel Kácha. 2013. IDEA: Designing the Data Model for Security Event Exchange.
In 17th International Conference on Computers: Recent Advances in Computer Sci-
ence.

[7] Kurt Thomas, Rony Amira, Adi Ben-Yoash, Ori Folger, Amir Hardon, Ari Berger,
Elie Bursztein, and Michael Bailey. 2016. The Abuse Sharing Economy: Under-
standing the Limits of Threat Exchanges. In Research in Attacks, Intrusions, and
Defenses (RAID) (LNCS 9854). Springer, 143–164. https://doi.org/10.1007/978-3-
319-45719-2_7

[8] Cynthia Wagner, Alexandre Dulaunoy, Gérard Wagener, and Andras Iklody. 2016.
MISP: The Design and Implementation of a Collaborative Threat Intelligence
Sharing Platform. In Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security. ACM, 49–56.

[9] Jing Zhang, Ari Chivukula, Michael Bailey, Manish Karir, and Mingyan Liu. 2013.
Characterization of Blacklists and Tainted Network Traffic. In Passive and Active
Measurement (LNCS 7799). Springer Berlin Heidelberg, 218–228. https://doi.org/
10.1007/978-3-642-36516-4_22

http://www.caida.org/data/as-classification
http://www.caida.org/data/as-classification
https://www.maxmind.com
https://doi.org/10.1016/j.future.2019.03.016
https://doi.org/10.1016/j.future.2019.03.016
https://doi.org/10.1145/3230833.3233279
https://doi.org/10.1007/978-3-319-45719-2_7
https://doi.org/10.1007/978-3-319-45719-2_7
https://doi.org/10.1007/978-3-642-36516-4_22
https://doi.org/10.1007/978-3-642-36516-4_22

	Abstract
	1 Introduction
	2 System description
	2.1 Data sources and storage
	2.2 Entity scoring
	2.3 Architecture
	2.4 Data processing
	2.5 Implementation technologies

	3 Access policy
	4 Current state
	4.1 Supported features and data sources
	4.2 Performance metrics

	5 Statistics
	6 Conclusions
	Acknowledgments
	References

